標住符號使用:
α(G) : maximum independent set
α'(G) : maximum matching
β(G) : minimum vertex cover
β'(G) : minimum edge cover我們這邊來探討這個等式是怎麼出來的呢?
從先前的 theorem、Lemma 中可得到相關性質:
α'(G) = β(G)
Theorem:
If G is a partite, then α'(G) = β(G)α(G) + β(G) = n(G)
Lemma:
In a graph G, S belong to V(G) is an "independent set" iff complement of S is a vertex cover, then " α(G) + β(G) = n(G) "α'(G) + β'(G) = n(G)
Theorem:
If G is a graph "without" isolated vertices, then " α'(G) + β'(G) = n(G) "簡單綜合了一下上述的性質後,可以得到列式:
α(G) + β(G) = α'(G) + β'(G) = n(G)
=> α(G) + β(G) = α'(G) + β'(G)再透過 α'(G) = β(G) 可以化簡上式:
=> α(G) = β'(G)推得此性質後,我們再回頭看看這些條件成立時,所需要的 graph 特性:
bipartite graph, and with no isolated vertices!所以可以得到 ->
當 G 是為 bipartite graph 且沒有 isolated vertices 時,maximum independent set 等於 minimum edge cover!