α(G) = β'(G)

標住符號使用:

α(G)    : maximum independent set
α'(G)    : maximum matching
β(G)   : minimum vertex cover
β'(G)   : minimum edge cover

我們這邊來探討這個等式是怎麼出來的呢?

由已知所提供

從先前的 theorem、Lemma 中可得到相關性質:

  1. α'(G) = β(G)

    Theorem:
     If G is a partite, then α'(G) = β(G)
  2. α(G) + β(G) = n(G)

    Lemma:
     In a graph G, S belong to V(G) is an "independent set" iff complement of S is a vertex cover, then " α(G) + β(G) = n(G) "
  3. α'(G) + β'(G) = n(G)

    Theorem:
     If G is a graph "without" isolated vertices, then " α'(G) + β'(G) = n(G) "

融合

簡單綜合了一下上述的性質後,可以得到列式:

α(G) + β(G) = α'(G) + β'(G) = n(G)
=> α(G) + β(G) = α'(G) + β'(G)

再透過 α'(G) = β(G) 可以化簡上式:

=> α(G) = β'(G)

再看到性質

推得此性質後,我們再回頭看看這些條件成立時,所需要的 graph 特性:

所以可以得到 -> 
當 G 是為 bipartite graph 且沒有 isolated vertices 時,maximum independent set 等於 minimum edge cover!